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A 6×6 transfer matrix is presented to evaluate the response of a multi-layered infinitely
long elastic cylinder, imbedded in a fluid and enclosing another fluid, to a given
two-dimensional pressure excitation on the outside or inside, or alternatively to evaluate
the acoustic pressure distribution excited by the radial velocity components of the radiating
surface. It is shown that the transfer matrix presented is a general case embodying the
transfer matrix of one-dimensional pressure excitation due to a normal incident wave. It
is also shown that the transfer matrix can be effectively used to obtain the scattering
coefficient and noise reduction of a multi-layered cylinder for the case of oblique incidence
of a plane wave. Numerical results for the scattering form function and noise reduction
of a multi-layered infinite cylinder are given to illustrate the effect of two-dimensionality
(angle of incidence), and layer material characteristics.

7 1998 Academic Press Limited

1. INTRODUCTION

The acoustical design of a shell that houses the transducer array in a cylindrical sonar
system intended to operate in active and passive modes, and decipher the signal
information of the echo/radiated wave that insonifies the dome wall, calls for studies
related to the presence of various types of waves and associated resonances that set in
during such excitation.

The studies concerning these phenomena for the case of oblique incidence have been
made mainly by using the classical normal mode solutions [1–5], wherein the response of
the cylindrical shell to a given pressure excitation and associated wave propagation is made
by expressing the displacements and stresses in terms of the scalar and vector potential
functions and formulating the characteristic equations in terms of their amplitudes by
satisfying the interfacial and boundary conditions. In a recent paper, Leon et al. [6] used
this approach to obtain the scattering form function for the case of oblique incidence on
an infinitely long cylinder. For the case of a hollow cylinder analysis presented by them,
the direct approach may seem to be appropriate. However, as the number of layers
constituting the hollow cylinder wall increases, the algebra associated with the formulation
of characteristic equations becomes cumbersome with the increase of six characteristic
equations for each additional layer and increase in the resultant matrix size (the matrix
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size being given by (6n+2)× (6n+2) where n is number of layers). It makes computation
of the inverse or determinant of the coefficient matrix much slower and some times may
even lead to numerical difficulties. On the other hand, the transfer matrix approach is best
suited for the analysis of ducts and mufflers [7], multi-layer flat plates for one-dimensional
as well as two-dimensional excitation [8, 9], and multi-layer cylinders for one-dimensional
excitation [10]. In fact, the development of a transfer matrix was first presented by
Thomson [11].

This paper is concerned with the derivation of a 6×6 transfer matrix connecting the
state variables on either side of the multi-layered infinitely long cylinder to obtain the
response of the shell, and scattering and transmission, in terms of elements of the overall
transfer matrix for the case of oblique incidence. The model uses exact equations of
elastodynamics, and construction of the solutions is done by using scalar and vector
potentials. Solutions for the scalar and vector potentials in each layer are given in terms
of Bessel functions. Following Brekhovskikh [12], interfacial conditions of continuity of
pressure and velocities between the layers and appropriate radiation impedances on the
exterior and interior of the multi-layered cylinder, have been used to obtain explicit
expressions for the scattering coefficient and transmission coefficient in terms of elements
of the transfer matrix. These expressions can be directly used for any number of layers
by noting that the elements of the final matrix are obtained after multiplication of the
elements of individual layers, with the resultant matrix remaining a 6×6 matrix
irrespective of the number of layers.

Expressions have also been derived to evaluate the response of the multi-layered cylinder
to a given two-dimensional pressure excitation on one of the faces (inside or outside) due
to oblique incident waves which indeed would result in a three-dimensional stress field,
unlike the case of one-dimensional pressure excitation due to normal incidence which
would correspond to a two-dimensional distribution of stresses and velocities, upon taking
into consideration the boundary conditions of zero shear and appropriate radiation
loading on the exposed faces. Similar expressions would hold for the acoustic pressure
excited by the radial velocity component of the exposed surface.

It is shown numerically that both the normal mode solution [6] and the present method
yield exactly the same results. Also it is shown analytically that the transfer matrix reduces
to a 4×4 transfer matrix presented in reference [10] for the limiting case of normal
incidence and one-dimensional pressure excitation.

Numerical examples are given here for the case of a two-layered cylinder consisting of
a visco-elastic layer backed by a metallic cylinder. Some parametric studies to illustrate
the effect of two-dimensionality (angle of incidence), and the layer material characteristics
have been carried out.

2. BASIC EQUATIONS

The geometry considered for the present problem is shown in Figure 1. The incident
plane wave makes an angle f1 with the axis of symmetry of the multi-layered cylindrical
shell, made up of m layers and having the inner and outer radii of each layer denoted by
ri

in and ri
out , where i denotes the ith layer counted from the outside. The axis of the

cylindrical shell is taken to be the z-axis of the cylindrical co-ordinate system (r, u, z). The
cylinder is imbedded in a fluid having density r0 and sound speed c0 and encloses another
fluid of density rm+1 having sound speed cm+1. The transmitted wave makes an angle f2

with the innermost layer. The outermost layer 1 and the innermost layer m are in contact
with the fluids. The six relevant state variables, the normal stress srr , shear stresses tru and
trz , and particle velocities Vr , Vu and Vz in the radial, circumferential and axial directions,
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Figure 1. Multi-layered infinite cylinder with different wave components and their angles.

respectively, at the two faces of first layer are shown in Figure 2. rin and rout have also been
shown for an intermediate layer.

Let the velocity vector field V� (r, u, z) be separated into an irrotational part and a
divergence–free part. In view of the identities curl grad f0 0 and div curl f� 0 0, one can
write [13]

V� =grad f+curl 8� . (1)

Thus,

Vr =
1f

1r
+

1
r

18z

1u
−

18u

1z
, Vu =

1
r

1f

1u
+

18r

1z
−

18z

1r
, Vz =

1f

1z
+

1
r

1(8u r)
1r

−
1
r

18r

1u
,

(2–4)

Figure 2. Co-ordinates and state variables on the outside and inside of one layer of the multi-layered cylinder.
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where f is the scalar potential and 8� is the vector potential. 8r , 8u , 8z represent
components of the vector potential 8� . The radial stress srr and shear stresses tru and trz

are given by [13]

srr =−
2G
jv 61Vr

1r
+

m

1−2m 01Vr

1r
+

Vr

r
+

1
r

1Vu

1u
+

1Vz

1z 17, (5)

tru =−
G
jv 01Vu

1r
−

Vu

r
+

1
r

1Vr

1u 1, trz =−
G
jv 01Vr

1z
+

1Vz

1r 1, (6, 7)

where G denotes the shear modulus, m the Poisson’s ratio, v the circular frequency of
excitation. Substituting equations (2–4) in equations (5–7) yields

srr =−
2G
jv 612f

1r2 +
1
r

128z

1r 1u
−

1
r2

18z

1u
−

128u

1r 1z
+

m

1−2m 012f

1r2 +
1
r

1f

1r
+

1
r2

12f

1u2 +
12f

1z217, (8)

tru =−
G
jv 6201r 12f

1r 1u
−

1
r2

1f

1u1−
128z

1r2 +
1
r

18z

1r
+

1
r2

128z

1u2 +
128r

1r 1z
−

1
r

18r

1z
−

1
r

128u

1u 1z7, (9)

trz =−
G
jv 62 12f

1r 1z
+

1
r

128z

1z 1u
−

128u

1z2 +
128u

1r2 +
1
r

18u

1r
−

8u

r2 +
1
r2

18r

1u
−

1
r

128r

1r 1u7. (10)

Making use of the equations of motion (136c) of reference [13],

G{(div grad)V� +[1/(1−2m)] grad (div V� )}= r 12V� /1t2, (11)

it can be shown that f and 8r , 8u , 8z in equations (2–4) and (8–10) satisfy the wave
equations [13]

G[2(1− m)/(1−2m)]92f= r 12f/1t2, G928i = r 128i /1t2, i= r, u, z, (12a, b)

where 92 = 12/1r2 + (1/r) 1/1r+(1/r2) 12/1u2 + 12/1z2 is the Laplacian operator and r is
the mass density. With the time dependence of all state variables being ejvt, the space
dependence of f and 8i is given by

92f+ k2
L f=0, 928i + k2

T 8i =0, i= r, u, z, (13a, b)

where

k2
L =0vcL1

2

=
v2r

G
1−2m

2(1− m)
=

v2r

E
(1−2m) (1+ m)

(1− m)
, k2

T =0vcL1
2

=
v2r

G
(14a, b)

and subscripts L and T denote longitudinal and transverse shear waves, respectively. cL ,
the speed of longitudinal waves, and cT , the speed of shear waves, are given by

c2
L =(G/r) (2(1− m)/1−2m), c2

T =G/r. (15)
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In the outside ambient fluid medium, the incident pressure and scattered pressure can be
given by [6]

Pi (r, u, z, t)= s
a

n=0

on (−j)nJn (k0,y r) e−jkz z cos (nu) ejvt, (16)

Ps (r, u, z, t)= s
a

n=0

on (−j)nbn H(2)
n (k0,y r) e−jkz z cos (nu) ejvt. (17)

As this paper is concerned with scattering coefficients normalized with respect to the
incident wave, the amplitude of the incident wave in equation (16) has been taken to be
unity.

The pressure field in the interior fluid of the multi-layered cylinder is given by

Pm+1 (r, u, z, t)= s
a

n=0

on (−j)ngn Jn (km+1,y r) e−jkz z cos (nu) ejvt. (18)

The general solutions of equations (12a, b), for use in the layers of the cylinder, can be
written as [6]

f(r, u, z, t)= s
a

n=0

on (−j)n{An Jn (qL r)+Bn Yn (qL r)} e−jkz z cos (nu) ejvt, (19a)

8r(r, u, z, t)= s
a

n=0

on (−j)n{Cn Jn+1 (qT r)+Dn Yn+1 (qT r)} e−jkz z sin (nu) ejvt, (19b)

8u(r, u, z, t)= s
a

n=0

−on (−j)n{Cn Jn+1 (qT r)+Dn Yn+1 (qT r)} e−jkz z cos (nu) ejvt, (19c)

8z(r, u, z, t)= s
a

n=0

on (−j)n{En Jn (qT r)+Fn Yn (qT r)} e−jkz z sin (nu) ejvt, (19d)

where k0 =v/c0, km+1 =v/cm+1, v is the circular frequency, c0 and cm+1 are the speeds
of sound in the exterior and interior ambient fluid media, respectively. k0,y = k0 cos f1, and
kz = k0 sin f1 are the wave numbers in the y and z directions in the outside ambient fluid,
km+1,y = km+1 cos f2 is the wave number in the y direction in the inside ambient fluid, qL

and qT are the wave numbers in the y direction for the longitudinal and shear waves in
the layers, respectively. on =1 for n=0 and on =2 for ne 1. Here, H(2)

n =Jn −jYn is the
Hankel function of the second kind for the nth azimuthal mode, Jn and Yn are Bessel and
Neumann functions of order n, respectively. bn , An , Bn , Cn , Dn , En , Fn and gn are the
scattering coefficients. The incident and transmitted angles f1 and f2 are related by the
expression k0 sin f1 = km+1 sin f2.

The wave numbers kL , kT , kz , qL and qT are related by the compatibility equations

q2
L = k2

L − k2
z , q2

T = k2
T − k2

z . (20a, b)

The presence of structural damping represented by a loss factor would make E and G and
thence cL and cT , kL and kT , qL , and qT , complex, which would make the arguments of
the Bessel functions of all three kinds complex. The general relationships that are
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applicable to the Bessel functions with complex arguments [12] are used in the derivations
presented here.

Evaluation of the scattering coefficients bn and gn , and the level difference or noise
reduction, represent formulation of the present problem.

3. DERIVATION OF THE TRANSFER MATRIX

Substituting equations (19a–d) in equations (2–4) and (8–10) yields the state variables
srr , tru , trz , Vz , Vr and Vu for the first layer in terms of the constants An , Bn , Cn , Dn , En

and Fn on the inside and outside radii of the first layer.
Defining the identities

an,1 0An Jn (qL r)+Bn Yn (qL r), an,2 0An Jn (qL r)+Bn Y'n (qL r), (21a, b)

bn,1 0Cn Jn+1 (qT r)+Dn Yn+1 (qT r), bn,2 0Cn J'n+1 (qT r)+Dn Y'n+1 (qT r), (22a, b)

dn,1 0En Jn (qT r)+Fn Yn (qT r), dn,2 0En J'n (qT r)+Fn Y'n (qT r), (23a, b)

one can write the state variables as

Vr = s
a

n=0

on (−j)n0qL an,2 +
n
r

dn,1 − jkz bn,1 1 exp(−jkz z) cos (nu), (24)

Vu = s
a

n=0

on (−j)n0−n
r

an,1 − qT dn,2 − jkz bn,1 1 exp(−jkz z) sin (nu), (25)

Vz = s
a

n=0

−on (−j)n0jkz an,1 +
n+1

r
bn,1 + qT bn,2 1 exp(−jkz z) cos (nu), (26)

srr = s
a

n=0

−on (−j)n 2G
jv $6k2

z −
k2

T

2 01−
F
r217an,1 −

qL

r
an,2 −

n
r2 dn,1 +

n
r

qT dn,2 − jkz qT bn,2 %
×exp (−jkz z) cos (nu), (27)

tru = s
a

n=0

−on (−j)n 2G
jv $n

r2 an,1 −
n
r

qL an,2 +
qT

r
dn,2 +6q2

T

2
−

n2

r27dn,1

+
jkz

2 6n+1
r

bn,1 − qT bn,2 7%exp(−jkz z) sin (nu), (28)

trz = s
a

n=0

−on (−j)n G
jv $−jkz 62qL an,2 +

n
r

dn,1 7+6k2
T −2k2

z −
n2

r2 +
n+1

r2 7bn,1 −
nqT

r
bn,2 %

×exp(−jkz z) cos (nu), (29)

where

F=2n2/k2
T . (30)
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The modal equations of the state variables can be written as

Vr,n =(qL an,2 + (n/r)dn,1 − jkz bn,1) exp(−jkz z), (31)

Vu,n =−((n/r)an,1 + qT dn,2 + jkz bn,1) exp(−jkz z), (32)

Vz,n =−0jkz an,1 +
n+1

r
bn,1 + qT bn,2 1 exp(−jkz z), (33)

srr,n =−
2G
jv $6k2

z −
k2

T

2 01−
F
r217an,1 −

qL

r
an,2 −

n
r2 dn,1 +

n
r

qT dn,2 − jkz qT bn,2%
×exp(−jkz z), (34)

tru,n =−
2G
jv $n

r2 an,1 −
n
r

qL an,2 +
qT

r
dn,2 +6q2

T

2
−

n2

r27dn,1 +
jkz

2 6n+1
r

bn,1 − qT bn,2 7%
×exp(−jkz z), (35)

trz,n =−
G
jv $−jkz 62qL an,2 +

n
r

dn,1 7+6k2
T −2k2

z −
n2

r2 +
n+1

r2 7bn,1 −
nqT

r
bn,2 %

×exp(−jkz z). (36)

The modal equations (31–36) can now be used to write expressions (24–29) of the state
variables in the simplified forms

Vr = s
a

n=0

on (−j)nVr,n cos (nu), Vu = s
a

n=0

on (−j)nVu,n sin (nu), (37, 38)

Vz = s
a

n=0

on (−j)nVz,n cos (nu), (39)

srr = s
a

n=0

on (−j)nsrr,n cos (nu), tru = s
a

n=0

on (−j)nsrr,n sin (nu), (40, 41)

trz = s
a

n=0

on (−j)nsrr,n cos (nu). (42)

For the nth azimuthal mode, solving equations (31–36) yields

an,1 = f1 srr,n + f2 tru,n + f3 trz,n + f4 Vz,n + f5 Vu,n + f6 Vr,n , (43)

an,2 = g1 srr,n + g2 tru,n + g3 trz,n + g4 Vz,n + g5 Vu,n + g6 Vr,n , (44)

bn,1 = p1 srr,n + p2 tru,n + p3 trz,n + p4 Vz,n + p5 Vu,n + p6 Vr,n , (45)

bn,2 = t1 srr,n + t2 tru,n + t3 trz,n + t4 Vz,n + t5 Vu,n + t6 Vr,n , (46)

dn,1 = h1 srr,n + h2 tru,n + h3 trz,n + h4 Vz,n + h5 Vu,n + h6 Vr,n , (47)

dn,2 = l1 srr,n + l2 tru,n + l3 trz,n + l4 Vz,n + l5 Vu,n + l6 Vr,n . (48)
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The coefficients fi , gi , pi , ti , hi and li , i=1–6 in equations (43–48) are given in the Appendix.
By making use of the recurrence relations of Bessel functions, the constants An , Bn , Cn ,

Dn , En and Fn can be obtained by solving simultaneously the system of equations (43–48).
Substituting these values of the constants An , Bn , Cn , Dn , En and Fn in the expressions of
state variables at r= rout given by equations (31–36), (the rather lengthy but
straightforward algebraic details are omitted here), one obtains the following transfer
matrix relationship between the state vector at (rout , u, z, n) and that at (rin , u, z, n):

K L K L K Lsrr,n (rout ) A11 A12 A13 A14 A15 A16 srr,n (rin )
G G G G G G

tru,n (rout ) A21 A22 A23 A24 A25 A26 tru,n (rin )G G G G G G
trz,n (rout ) A31 A32 A33 A34 A35 A36 trz,n (rin )G G G G G G

G G G G G GVz,n (rout )
=

A41 A42 A43 A44 A45 A46 Vz,n (rin )
. (49)

G G G G G GVu,n (rout ) A51 A52 A53 A54 A55 A56 Vu,n (rin )G G G G G G
Vr,n (rout ) A61 A62 A63 A64 A65 A66 Vr,n (rin )k l k l k l

The elements Aij of this transfer matrix are given in the Appendix.

4. EVALUATION OF SCATTERING AND TRANSMISSION COEFFICIENTS OF
MULTI-LAYERED CYLINDER WITH TWO-DIMENSIONAL PRESSURE EXCITATION

The procedure used in deriving the transfer matrix relation (49) for the first layer can
be made use of in deriving the transfer matrices of the successive layers 2 to m as well.
Then the multi-layer system, comprising the exterior ambient medium ‘‘0’’, m successive
layers and the interior medium ‘‘m+1’’, can be represented by an overall transfer matrix,
as given by

[S]0 = [A] [S]m , (50)

where

[A]= [A]1 [A]2 . . . [A]m . (51)

[A], the overall transfer matrix for the nth azimuthal mode, can be written as

K L K L K Lsrr,0,n A11 A12 A13 A14 A15 A16 srr,m,n

G G G G G G
tru,0,n A21 A22 A23 A24 A25 A26 tru,m,nG G G G G G
trz,0,n A31 A32 A33 A34 A35 A36 trz,m,nG G G G G G

G G G G G GVz,0,n
=

A41 A42 A43 A44 A45 A46 Vz,m,n
. (52)

G G G G G GVu,0,n A51 A52 A53 A54 A55 A56 Vu,m,nG G G G G G
Vr,0,n A61 A62 A63 A64 A65 A66 Vr,m,nk l k l k l

The ambient media in contact with layers 1 and m being fluids, shear stresses on both the
exposed surfaces of the multi-layer system will be zero: i.e.,

tru,0,n = tru,m,n = trz,0,n = trz,m,n =0. (53)

The modal pressure and modal radial velocity on the exterior face are given by

P0,n = {Jn (k0,y rout )+ bn H(2)
n (k0,y rout )} e−jkz z cos (nu) ejvt, (54)

Vr,0,n =(j/r0 c0){J'n (k0,y rout )+ bn H(2)'n (k0,y rout )} e−jkz z cos (nu) ejvt. (55)
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The modal impedance of the incident wave and scattered waves on the exterior surface
can be given by

Z0,n,i =−jr0 c0 Jn (k0,y rout )/J'n (k0,y rout ), Z0,n,s =−jr0 c0 H(2)
n (k0,y rout )/H(2)'n (k0,y rout ).

(56, 57)

The standing wave pressure is equal to the normal compressive stress: i.e.,

srr,0,n =P0,n . (58)

The corresponding relationships for the interior face are

Pm,n = gn Jn (km+1,y rin ) e−jkz z cos (nu), Vr,m,n =
jgn J'n (km+1,y rin )

rm+1 cm+1
e−jkz z cos (nu),

(59, 60)

Zm+1,n =−jrm+1 cm+1 Jn (km+1,y rin )/J'n (km+1,y rin ), srr,m,n =Pm,n =Vr,m,n Zm+1,n

(61, 62)

where Zm+1,n is the modal impedance exerted on the interior surface. The function
e−jkz z cos (nu) ejvt is common for modal pressure and modal radial velocity on both the
exterior and interior faces, and therefore can be dropped henceforth for convenience of
writing.

Making use of the boundary conditions (53), (54), (58) and (62), and the transfer matrix
(49), one obtains

Vr,m,n =−(P0,n /DEN)A25, Vu,m,n =−(P0,n /A15){1+ [A25 (M11 −A14 M35)]/DEN},
(63, 64)

Vz,m,n =−Vr,m,n M35 = (A25 /DEN)P0,n M35, Vr,0,n z=P0,n , (65, 66)

where

DEN=A15 {M21 −M35 A24 −M11 A25 /A15 +M35 A14 A25 /A15}, (67)

M11 =A11 Zm+1 +A16, M21 =A21 Zm+1 +A26, M31 =A31 Zm+1 +A36, (68a–c)

M35 = (A35 M21 −A25 M31)/(A35 A24 −A25 A34), M61 =A61 Zm+1 +A66. (68d, e)

z in equation (66) represents the equivalent impedance of the complete passive sub-system
consisting of layers 1 to m (whose impedance is denoted by zL ) and the radiation impedance
exerted by the interior ambient fluid medium m+1 (whose impedance is denoted by
Zm+1).

The equivalent impedance z= f(zL , Zm+1) is given by

z=
{A15 M21 −A15 M35 A24 −M11 A25 +M35 A14 A25}

{−A25 M61 +A25 A64 M35 +A65 M21 −A24 A65 M35}
. (69)

Substituting equations (54) and (55) into equation (66) yields an expression for the
scattering coefficient bn :

bn = {r0 c0 Jn (k0,y rout )− jzJ'n (k0,y rout )}/{jzH(2)'
n (k0,y rout )− r0 c0 H(2)

n (k0,y rout )}. (70)

By making use of the expressions for the modal incident and scattered wave impedances
and surface impedances on the interior surface given in equations (56), (57) and (61), one
can write equation (70) as

bn =−[J'n (k0,y rout )]/H(2)'n (k0,y rout )] [(z−Z0,n,i )/(z−Z0,n,s )]. (71)
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Substitution of expression (71) for the scattering coefficient into equation (17) yields the
expression for the scattered pressure:

Ps = s
a

n=0

−on (−j)n J'n (k0,y rout )
H(2)'n (k0,y rout )

(z−Z0,n,i )
(z−Z0,n,s )

H(2)
n (k0,y rout ) exp(−jkz z) cos (nu). (72)

In the far field, by making use of the asymptotic representation for the Hankel function
of the second kind given in reference [14],

H(2)
n

=(2/pk0,y r)0.5 exp(−j(k0,y r− np/2− p/4)), (73)

the scattered pressure defined in equation (72) can be written as

Ps =0 2j
pk0,y rout1

0·5

exp(−jk0,y rout ) exp(−jkz z) s
a

n=0

on bn cos (nu). (74)

The scattering form function is defined as [6]

=fa == 2
(pk0,y rout )0·5 b san=0

on bn cos (nu)b. (75)

For the case of monostatic back scattering, u= p, making cos (np)= (−1)n, the expression
for the scattering form function becomes

=fa == 2
(pk0,y rout )0·5 b san=0

on bn(−1)nb. (76)

Upon substituting expression (54) for the scattering coefficient bn into equation (76), and
making use of equations (59–62), one finds

gn = {Jn (k0,y rout )+ bn H(2)
n (k0,y rout )}A25 Zm+1 /DEN Jn (km+1,y rin ). (77)

Substitution of this expression into equation (18) yields the pressure field transmitted
through the shell:

Pm+1 = s
a

n=0

on (−j)n{Jn (k0,y rout )+ bn H(2)
n (k0,y rout )}

A25 Zm+1,n

DEN
exp(−jkz z) cos (nu). (78)

The level difference, or noise reduction, achieved by the cylindrical shell is given by

NR=20 log10 b(Pi +Ps )
Pm+1 b

=20 log10G
G

G

K

k

s
a

n=0

on (−j)n{Jn (k0,y rout )+ bn H(2)
n (k0,y rout )} exp(−jkz z) cos (nu)

s
a

n=0

on (−j)ngn Jn (km+1,y rin ) exp(−jkin z) cos (nu)

G
G

G

L

l

.

(79)
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For the case of monostatic back scattering, u= p, making cos (np)= (−1)n, the expression
for noise reduction becomes

NR=20 log10 b(Pi +Ps )
Pm+1 b

=20 log10G
G

G

K

k

s
a

n=0

on (−j)n{Jn (k0,y rout )+ bn H(2)
n (k0 rout )} exp(−jkz z) (−1)n

s
a

n=0

on (−j)nFn Jn (km+1,y rin ) exp(−jkz z) (−1)n

G
G

G

L

l

. (80)

In the limiting case of one-dimensional pressure excitation, the expressions for Vr,m,n , Vu,m,n ,
DEN, bn and gn , given in equations (63), (64), (67), (70) and (77), become

Vr,m,n =(T23 /DEN)P0,n , Vu,m,n =−(T21 Zm+1 +T24)P0,n /DEN, (81, 82)

DEN=−T13 (T21 Zm+1 +T24)+T23 (T11 Zm+1 +T14), (83)

bn = {r0 c0 Jn (k0,y rout )− jzJ'n (k0,y rout )}/{jzH(2)'
n

(k0,y rout )− r0 c0 H(2)
n (k0,y rout )}, (84)

where

z= {T23 (T11 Zm+1,n +T14)−T13 (T21 Zm+1,n +T24)}/{T23 (T41 Zm+1,n +T44)

−T43 (T21 Zm+1,n +T24)}, (85a)

gn = {Jn (k0,y rout )+ bn H(2)
n (k0,y rout )}

T23 Zm+1

DEN Jn (km+1,y rin )
. (85b)

Here the following equivalences of the elements of the 6×6 transfer matrix [A]ij of
equation (49) in the limiting case of one-dimensional pressure excitation to elements of the
4×4 transfer matrix [T]ij in reference [10] have been used:

A15 =T13, A16 =T14, A25 =T23, A26 =T24, (86a)

M11 =A11 Zm+1 +A16 =T11 Zm+1 +A14, M21 =A21 Zm+1 +A26 =T21 Zm+1 +T24,

(86b, c)

M31 =A31 Zm+1 +A36 vanishes, (86d)

M35 = (A35 M21 −A25 M31)/(A35 A24 −A25 A34) vanishes, (86e)

M61 =A61 Zm+1 +A66 =T41 Zm+1 +T44. (86f)

It may be seen that equations (81–85) are identical to equations (62–64), (69) and (77),
respectively, in reference [10]. These deductions confirm that the expressions of scattering
coefficient and noise reduction given above in equations (70) and (79) for the case of
two-dimensional pressure excitation embody in them the one-dimensional or normal
pressure excitation dealt with in reference [10].

5. RESPONSE OF THE MULTI-LAYERED CYLINDER TO EXTERNAL EXCITATION

The transfer matrix relation (49) can be used to evaluate the radial velocities at the two
exposed surfaces of the multi-layer cylinder excited by a two-dimensional pressure
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excitation, or alternatively to evaluate the acoustic pressure distribution excited by the
radial velocity components of the radiating surfaces.

Let the modal external excitation on the exterior of the first layer have the following
distribution:

P0,n = {Jn (k0,y rout )+ bn H(2)
n (k0,y rout )} exp(−jkz z) cos (nu). (87)

The resulting compressive stresses at the exposed surfaces r= rin and r= rout are given by

srr,n,0 =P0,n −Z0,n Vr,0,n , srr,n,m =Zm+1,n Vr,m,n , (88, 89)

where Z0,n and Zm+1,n are the modal radiation impedances exerted by the ambient medium
in contact with the first layer and the mth layer, respectively (see equations (56), (57) and
(61)).

If the ambient media are fluids, they will not support any shear stresses. Then,

tru,0,n = tru,m,n = trz,0,n = trz,m,n =0. (90)

Substituting the six boundary conditions (88–90) in the six equations of the transfer matrix
(49), one can derive the expressions for the normal velocities at the two exposed surfaces.
With the algebraic details omitted, one finds

Vu,m,n =
P0,n − {M11 −A14 M35 +Z0,n (M61 −A64 M35)}

(A15 +Z0,n A65)
Vr,m,n , (91)

Vr,m,n =(A25 /DEN)P0,n , (92)

Vr,0,n =6 A65

(A65 Z0,n +A15)
−

A25 (M11 A65 −A14 M35 A65 −M61 A15 +A64 M35 A15)
DEN(A65 Z0,n +A15) 7, (93)

where

DEN=−(A15 +Z0,n A65) (M21 −A24 M35)+A25 {M11 −A14 M35 +Z0,n (M61 −A64 M35)}.
(94)

Incidentally, in the limiting case of one-dimensional pressure excitation, Vr,m,n , Vr,0,n and
DEN given by equations (92–94) turn out to be

Vr,m,n =
T23

{−M21 (T13 +Z0,n T43)+T23 (M11 +Z0,n M41)}
P0,n , (95)

Vr,0,n =6T43 −
T23(T43 M11 −T13 M41)

DEN 7 P0,n

(T13 +Z0,n T43)
, (96)

DEN= {−(T43 Z0,n +T13)M21 + (M41 Z0,n +M11)T23}. (97)

Equations (95–97) may be seen to tally with the corresponding expressions (96), (99) and
(97), respectively, in reference [10], thereby confirming that expressions (92–94) reduce to
those for the normal or one-dimensional pressure excitation in the limiting case.

6. NUMERICAL RESULTS

In order to illustrate the use of this transfer matrix approach to evaluate the scattering
coefficient and noise reduction of a two-layer infinite cylinder, for the case of oblique
incidence and two-dimensional pressure excitation, some numerical examples are
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T 1

Material properties

Material Density (r) Modulus of elasticity (E) Poisson’s ratio (m)

Elastomer layer 1200 3·3×108 (1+ j0·8) 0·49
Backing steel layer 7800 2·1×1011(1+ j0·002) 0·31

presented. Unless otherwise specified, the configuration chosen is a carbon steel infinite
cylinder of 5 mm thickness (rout =100 mm, rin =95 mm). Results are shown for the
frequency range of k0 rout =0–20, which is typical of the underwater acoustic applications
for which the present model is primarily expected to be used. Default values of the outer
and inner radius of the multi-layer cylinder consisting of a carbon steel inner cylinder lined
with an outer elastomer cylindrical layer are rout =100 mm and rin =90 mm (rout =100 mm
and rin =95 mm for the elastomer cylinder, and rout =95 mm and rin =90 mm for the steel
cylinder). Monostatic back scattering is considered for all the computations. Water and
air are considered as the ambient medium outside and inside of the cylinder, respectively.

Values of the density (kg/m3), Poisson’s ratio and elastic modulus (Pa) for the two
constituent layers are given in Table 1.

The presence of structural damping represented by a loss factor would make E and G
and thence cL and cT , or kL and kT , complex, which would make the arguments of the Bessel
functions of all three kinds complex. The series representations for Bessel functions [14]
are used in the computations.

Values of the density (kg/m3) and speed of sound (m/s) for sea water and air (which
are the ambient media) are given in Table 2.

Figure 3 shows the scattering form function plotted for the case of the aluminium
cylinder (rout =100 mm, rin =95 mm) as calculated by using the present transfer matrix
method for three different angles of incidence f1 (0°, 9° and 24°). It is observed through
the numerical computation that the values of scattering form function obtained for this
case by using the normal solution of reference [6], and by the present method, agree to
the fourth decimal, which indeed indicates that both the methods lead to the same result,
confirming the validity of the matrix elements presented in the Appendix.

Figures 4 and 5 show the effect of the angle of incidence f1 on the scattering form
function and noise reduction, plotted for the case of a steel cylinder (rout =100 mm and
rin =95 mm). The angle of incidence is chosen to cover all the four cases of interest: i.e.,
f1 =0, f1 Qf1,L , f1,L Qf1 Qf1,T and f1 qf1,T , where f1,L and f1,T are the values of the
critical angle for longitudinal waves and transverse waves, respectively. It can be observed
from Figure 4 that the trends of =fa = for f1 =0° and f1 =10° look alike except for a shift
of the peaks to the lower side of the frequency for the latter case. The plot for the case
of f1 =30° contains rapid kinks at higher frequencies which are due to incidence beyond
the critical angle.

T 2

Ambient media properties

Ambient medium Density (r) Speeds of sound (c0)

Sea Water 1025 1500
Air 1·18 340
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Figure 3. Scattering form functions = fa = for aluminium cylinder compared with normal mode solution of
reference [6] for various angles of incidence f1. —, 0°; ----, 9°; · · · · 24°.

Figures 6 and 7 show the scattering form function and noise reduction for various layer
configurations. Results are plotted for the cases of an elastomer cylinder (rout =100 mm
and rin =95 mm), steel cylinder (rout =100 mm and rin =95 mm), and the combination of
the two (lined cylinder, rout =100 mm and rin =90 mm) for f1 =10°. Results are plotted
for k0 rout =0–5 only for the sake of clarity of observation. It is observed from Figure 6
that there is a sharp peak at about 10 000 Hz (k0 rout =0–5) for the case of the elastomer
cylinder, which is smoothed out by the presence of the backing steel cylinder for the case
of the lined cylinder. As expected, the presence of the elastomer layer in a lined cylinder
enhances the noise reduction at all frequencies, compared to the case of single steel
cylinder, as can be observed from Figure 7.

6.1. -    †
There are hoses like those used in automotive climate control systems where the hose

wall is made up of four different types of elastomers or polymers. The transfer matrix
method can deal with this four-layer cylindrical hose with equal ease. Results are shown
in Figures 8 and 9 for two configurations shown in Table 3. The abscissa is krsh0 k0 rout

in both the figures. Each of the four layers in either configuration is 5 mm thick. The
outermost radius is 100 mm as for the previous cases. The medium is air on the outside
as well as inside.

It may be observed from Figure 8 that reversing the order of the layers has little effect
on the scattering form function, where the two curves are completely overlapping. This
is typical of the symmetrical nature of impedance mismatch, as shown for sudden
expansion and contraction in reference [7] and for change in media in reference [13].
However, the curvature effect of the cylindrical surfaces produces considerable differences

† This example is also presented in reference [10], but is included for completeness here, in response to
comments by the referees.
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Figure 4. Scattering form functions = fa = of a steel cylinder at various angles of incidence. f1. —, 0°; ----, 10°;
· · · 20°; —W— 30°.

Figure 5. Noise reduction NR of a steel cylinder at various angles of incidence f1. (a), 0°; (b), 10°; (c), 20°;
(d), 30°.

in the noise reduction values as may be noted from Figure 9. This effect has also been
observed in the interchange of the rubber and steel layers, although it is not shown here.
Neverthelesss, the primary purpose of Figures 8 and 9 is to show that the transfer matrix
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Figure 6. Scattering form functions = fa = for various cylinder configurations. ——, Elastomer cylinder alone;
–––, backing steel cylinder alone; · · · · , steel cylinder lined with elastomer layer.

Figure 7. Noise reduction NR for various cylinder configurations. ——, Elastomer cylinder alone; ----, backing
steel cylinder alone; · · · · , steel cylinder lined with elastomer layer.
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T 3

Hose configurations

Poisson’s Density r Storage modulus Loss factor
ratio m (km/m3) Er (Pa) h

Configuration (a)
Layer 1 0·49 1200 3·3×107 0·8
Layer 2 0·47 1250 3·3×108 0·6
Layer 3 0·45 1300 3·3×109 0·4
Layer 4 0·43 1350 3·3×1010 0·2

Configuration (b)
Layer 1 0·43 1350 3·3×1010 0·2
Layer 2 0·45 1300 3·3×109 0·4
Layer 3 0·47 1250 3·3×108 0·6
Layer 4 0·49 1200 3·3×107 0·8

Figure 8. Scattering form function of a four-layer hose. ——, Configuration (a); ----, configuration (b).

Figure 9. Noise reduction of a four-layer hose. ——, Configuration (a); ----, configuration (b).
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method may be applied readily to any number of layers, where the classical approach
would be too cumbersome and susceptible to numerical instabilities.

7. CONCLUDING REMARKS

The transfer matrix presented here can be easily adapted to small or personal computers
to evaluate the response of a multi-layer cylinder excited by a plane wave with
two-dimensional pressure excitation. It has been shown to reduce to the 4×4 transfer
matrix of reference [10] for the limiting case of normal or one-dimensional excitation. The
overall transfer matrix elements can be obtained by multiplying the transfer matrices of
successive layers by feeding in the elastic properties for the respective layers. Expressions
are given for evaluation of the acoustic characteristics of the multi-layer cylinder.
Numerical examples have been presented to illustrate the effect of two-dimensionality
(angle of incidence) and the type of layer on scattering form function and noise reduction
of a single layer, two-layer, and a four-layer cylinder.
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of the Acoustical Society of America 84, 683–688. Acoustic resonances of thin cylindrical shells
and the resonance scattering theory.

4. G. M et al. 1990 Journal of the Acoustical Society of America 77, 1352–1357. Resonances
of plates and cylinders, and guided waves.
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APPENDIX

The elements of the transfer matrix of equation (49) are as follows:

A1i =−
pG
jv $qL rin 60k2

z −
k2

T

2
+

n2

r2
out1li −

qL

rout
hi 7−

qT rin

r2
out

{hqi − nqT rout ji +jkz qT r2
out gi}%,

A2i =−
pG
jv $qL nrin

r2
out

(li − qL rout hi )+
qT rin

rout 60q2
T

2
−

n2

r2
out1rout qi

+ qT ji −
jkz rout

2
qT gi +

jkz

2
(n+1)xi 7%,

A3i =−
p

2
G
jv $−jkz 02q2

L rin hi +
nqT rin

rout
qi 1+ qT rin 0k2

T −
n2

r2
out

−2k2
z +

n+1
r2

out 1xi −
nq2

T rin

rout
gi%,

A4i =−
p

2 $jkz qL rin li + qT rin 6qT gi +
(n+1)

rout
xi 7%,

A5i =−
p

2 $qL nrin

rout
li + qT rin (qT ji +jkz xi )%, A6i =

p

2 $q2
L rin hi +

qT rin

rout
(nqi −jkz rout xi )%.

Here the suffix i=1, 2, 3, 4, 5, 6 used in the elements of matrix [A] indicate the column.
The variables li , hi , qi , ji , gi , xi , i=1, 2, 3, 4, 5, 6, are given by

li = gi Pn,L − fi Rn,L , hi = gi Qn,L − fi Sn,L , qi = li Pn,T − hi Rn,T ,

ji = li Qn,T − hi Sn,T , gi = ti Qn+1,T − pi Sn+1,T , xi = ti Pn+1,T − pi Rn+1,T ,

where, in turn,

f1 = jv/Gk2
T, f2 =0, f3 =0, f4 =2jkz /k2

T , f5 =2n/k2
T rin , f6−2/k2

T rin ,

h1 = jvk2
z /Gk2

T q2
T , h2 =−jv/Gq2

T , h3 =0,

h4 = (jkz /q2
T) (2k2

z /k2
T −1), h5 = (2/q2

T rin ) (1− nk2
z /k2

T ), h6 = (2/q2
T rin ) (n− k2

z /k2
T ),

pi =−(1/V){(jkz n/rin ) (hi + fi )+Dp}, i=1, 2, 3, 4, 5, 6, V=(2n+1)/r2
in + k2

T ,

Dp =0 for i=1, 2, 5, Dp =jv/G for i=3, Dp = n/rin for i=4,

Dp =−2jkz for i=6,

ti =−(1/qT ){jkz fi +[(n+1)/rin ]pi +Dt}, i=1, 2, 3, 4, 5, 6,

Dt =0 for i=1, 2, 3, 4, 5, 6, Dt =1 for i=4,

li =−(1/qT ){jkz pi +(n/rin )fi +Dl}, i=1, 2, 3, 4, 5, 6,

Dl =0 for i=1, 2, 3, 4, 6, Dl =1 for i=5,
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gi =(1/qL ){jkz pi −(n/rin )hi +Dg}, i=1, 2, 3, 4, 5, 6,

Dg =0 for i=1, 2, 3, 4, 5, Dg =1 for i=6,

Pn,L =Jn (qL rin )Yn (qL rout )−Yn (qL rin )Jn (qL rout ),

Qn,L =Jn (qL rin )Y'n (qL rout )−Yn (qL rin )J'n (qL rout ),

Rn,L =J'n (qL rin )Yn (qL rout )−Y'n (qL rin )Jn (qL rout ),

Sn,L =J'n (qL rin )Y'n (qL rout )−Y'n (qL rin )J'n (qL rout ),

Pn,T =Jn (qT rin )Yn (qT rout )−Yn (qT rin )Jn (qT rout ),

Qn,T =Jn (qT rin )Y'n (qT rout )−Yn (qT rin )J'n (qT rout ),

Rn,T =J'n (qT rin )Yn (qT rout )−Y'n (qT rin )Jn (qT rout ),

Sn,T =J'n (qT rin )Y'n (qT rout )−Y'n (qT rin )J'n (qT rout ),

Pn+1,T =Jn+1 (qT rin )Yn+1 (qT rout )−Yn+1 (qT rin )Jn+1 (qT rout ),

Qn+1,T =Jn+1 (qT rin )Y'n+1 (qT rout )−Yn+1 (qT rin )J'n+1 (qT rout ),

Rn+1,T =J'n+1 (qT rin )Yn+1 (qT rout )−Y'n+1 (qT rin )Jn+1 (qT rout ),

Sn+1,T =J'n+1 (qT rin )Y'n+1 (qT rout )−Y'n+1 (qT rin )J'n+1 (qT rout ).


